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The generation, advection and diffusion of magnetic fields in cylindrically symmetric 
plasmas is considered. Stable and conservative numerical schemes for treating this problem 
within the framework of a conventional multi-celled fluid code are presented. 

1. INTRODUCTION 

The observation of strong magnetic fields associated with the plasmas generated by 
strong laser irradiation of solid targets has led to considerable interest in the self- 
generation of magnetic fields within the plasma. Initial theory considered only the 
effects of the electron pressure as source [ 1,2]. More recently it has been shown that 
the thermo-electric terms [3,4] can contribute significantly. In addition, further 
sources directly associated with the laser [5,6] may also be present in a given 
experiment. In this paper we shall consider only the internal electron pressure and 
thermo-electric sources of the field. The inclusion of further external sources is trivial 
and easily incorporated with the schemes described in this paper. 

Since the magnetic field is intimately related to gradients in the electron density 
and temperature, it is clear that the fields only,develop in an evolving plasma. Thus 
in any realistic situation one must solve the magnetic field equations consistently with 
those of the plasma hydrodynamics. Furthermore, since the fields are only produced 
in a plasma with non-parallel electron density and temperature gradients, it is clear 
that the hydrodynamics must be solved in at least a two dimensional flow. This 
involves a typical two dimensional cell-type calculation, which may be in Eulerian or 
Lagrangian geometry. This problem is best treated in Eulerian geometry, and a 
number of satisfactory hydrodynamic schemes are available [7-lo]. 

In this paper we shall assume that the incoming laser radiation is cylindrically 
symmetric. This allows the problem to be treated in cylindrical (two dimensional) 
geometry, with a considerable saving in computer effort. Under these circumstances 
the only magnetic field component is azimuthal [3], the lines of force forming 
circular loops about the axis. By symmetry the flux density must be zero on the axis 
(B = 0, at r = 0). 
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This problem has been treated in a number of different ways by various authors 
[ 1 l-141. In this paper we shall present a scheme which allows the computations to 
maintain the conservation properties of the physical quantities involved, and yet 
entails a minimum of storage, only the flow variables being used in the calculation. 
Furthermore efforts are made to allow the use of as large a time-step as possible, 
within the constraints of the hydrodynamics, to reduce the total running time of the 
code. 

Such a programme clearly has many similarities with those developed for magneto- 
hydrodynamic flows [ 15, 161. Lindemuth [ 171 has drawn attention to the difficulty of 
maintaining energy conservation in these schemes, and has shown how this may be 
done. The finite difference schemes used here closely resemble those proposed by 
Lindemuth [ 171 in the use of face-centred differences, and have the same conser- 
vation properties. 

In this paper we shall first examine the basic form of the differential equations 
governing these phenomena. Being essentially the equations of magneto- 
hydrodynamics, these relations express general conservation laws of mass, 
momentum, energy and magnetic flux. In view of this it is natural to identify terms 
which are coupled through these conservation laws, such as, for example, the 
magnetic diffusion/Ohmic heating terms in the magnetic field and electron energy 
equations: the finite difference relations are later developed in these complementary 
terms. The governing equations are also recast into a general conservative form in 
order to demonstrate the conservation relations. 

In principle one would like to perform the calculation of the hydrodynamics, 
diffusion and magnetic field generation simultaneously within a single loop. The 
recent advances made in solving large sparse matrices by the ICCG method [ 181 
make such a programme feasible, although it will make large demands on computer 
storage. Alternatively one can use an alternating direction integration (ADI) method 
to perform the calculation, as has been done for the standard magneto-hydrodynamic 
problem by Lindemuth and Killeen [ 161. Such an approach, whilst it can be made to 
obey the governing conservation relations exactly, is made more difficult by the need 
to simultaneously solve three energy relaxation processes, magnetic, electron and ion 
thermal energies, and does not readily allow the use of a stiff form with a large 
effective time-step. To reduce the complexity of the problem it is advantageous to use 
the split time-step philosophy, and separate the various calculations into their 
complementary parts, which mutually maintain energy conservation. 

It is clear from the above remarks that conservation relations must play an 
important role in assembling the finite difference relations to describe these 
phenomena. Unfortunately these are not the only essential physical constraints on the 
problem; a further important condition is that of positivity, particularly with regard 
to the individual energy terms. It is not possible to maintain strict positivity of all 
individual energy terms simultaneously with exact energy conservation, but only with 
a weaker conservation condition. One is therefore faced with a compromise either to 
maintain exact (strong) energy conservation, and eliminate positivity violations by an 
ad hoc procedure such as reset to zero, or to maintain positivity but allow some 
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conservation error. We have adopted the latter approach using algorithms for which 
the conservation error may be restricted to within a prescribed limit by an 
appropriate time-step control (weak conservation). Both exact (strong) and weak 
conservation forms of the algorithms will be given. These general conditions on 
conservation wll be discussed, and a simple stability theorem for such schemes 
derived. 

Some effort has been made to set up the finite difference relations using a general 
approach in terms of face-centred differencing of the governing differential equations. 
The basic difference schemes used are described before proceeding to the treatment of 
specific terms in the equations, which are investigated within the time-splitting 
approximation. 

The set of differential equations are split into interacting terms, which are 
differenced in such a way as to maintain the overall conservation laws of the exact 
solution. The splitting is accomplished into the following sets of equations: magnetic 
source, magnetic diffusion/Ohmic heating, thermal conduction, magnetic pressure and 
acceleration/magnetic flux convection. It is shown for stability most of these terms 
must be differenced implicitly. The resultant matrix equations are solved either by 
ICCG [ 181 (magnetic diffusion and thermal conduction) or by an AD1 approach 
involving Newton-Raphson iteration (magnetic source). The inclusion of these terms 
in the working code MAGT is briefly described and some results illustrating its 
behaviour presented. 

(i) The Governing Equations 

The equations describing the self-generation of magnetic fields in plasmas were 
derived in Ref. [3]. However, for our purposes it is convenient to use slightly 
modified forms of the equations given previously, from which they are obtained by 
the use of vector identities. The equations will be given in Gaussian units with e the 
unsigned electron charge, c velocity of light and k Boltzmann’s constant. 

The growth of the magnetic flux density B in a plasma moving with velocity v and 
magnetic diffusivity tensor n (including the complete Hall term [3]) is given by 

~-oA(v~~)+v~[q.(VAB)]=VAS (1) 

advection diffusion SO”KX 

where the terms are identified by the words below. 
The source function may be written as: 

S=$V(kT,) (2) 

where the tensor p, defined in Ref. [3], includes both the usual Vn, A VkT, terms 
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and the thermo-electric diffusion tensor p, whose values are given in Ref. [ 19 ] 
through 

PI i = 8, - We>, PI = p”I - ln(n,), B- =p”, (3) 

in the usual notation [ 191. 
With this definition of the source function S, the most appropriate form of the 

electron energy equation is 

i E, + v * (E,V) + pev * v + v . q, 

advection work thermal diffusion 

= We - G-J +j.V 

external electron/ion current Ohmic magnetic 
heating exchange convection heating source 

(4) 

where the current density 

j=-&-DAB (5) 

and E,, p, and T, are the electron energy density, pressure and temperature, respec- 
tively. p is the plasma resistivity. We is the external electron heat deposition rate per 
unit volume from a source (e.g., a laser). G is the collisional ion/electron heat 
exchange rate per unit volume, whose value is given by Spitzer [20]. J is an 
additional ion/electron energy exchange term associated with the work done on the 
moving fluid by the force resulting from the momentum transfer of the resistance to 
the electron current flow; its value is given in Ref. [3]. The thermal heat flux is the 
usual term due to thermal conduction plus a contribution from the thermo-electric 
effect 

qr=-u e . VT, - WA@ AjPT,lel (6) 

where h is a unit vector in the direction of B. 
In practice we shall use the specific electron energy (per unit plasma mass), E, as a 

characteristic variable. This is given by 

E = E,fd = 3ZkT,/2mi = kT,la, (7) 

where d is the plasma density, Z the average ionic charge and mi the mean ion mass. 
The constant a = 2m,/3Z. The heavy particle energy density, Ei, is given by a similar 
equation, without the magnetic field terms, 

aeipt + v * (EiV) + piv * v + v f qi = wi + G +J. 
advection work thermal external ion electron 

conduction heating cuhangc 

(8) 
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where pi is the heavy particle partial pressure, qi = -rci. VT the heavy particle 
thermal conduction flux, and Wj the external heavy particle heating rate per unit 
volume. In this case also we introduce the specific heavy particle energy, H = &i/d. 

The magnetic field terms also modify the flow velocity via the bulk Lorentz force 
j A B/c. Thus Euler’s equation becomes: 

Z--&B. V)B--&V(B’)- VP, (9) 

magnetic 
tension 

magnetic 
pleSS”rL? 

particle 
pressure 

where p (=pi + p,) is the total particle pressure. The generalisation of pressure to a 
stress tensor is accomplished in the usual way. 

The equations are completed by the equation of continuity: 

ad/at + V . (dv) = 0. (10) 

We shall use the above equations in these forms. Expressing the derivatives in an 
appropriate finite difference form, we shall derive difference equations which satisfy 
the following conservation laws. 

(ii) The Conservation Laws 

Since the flow is hydrodynamic, clearly mass conservation must be satisfied. 
Momentum conservation is obtained from Eq. (9) in the usual way. 
In order to demonstrate energy conservation we add to equations for s,(4) and 

E#), the scalar product of (1) with B/47r, and the scalar product of (9) with v to 
obtain 

; (E + fpd + B*/87r) + V . [{E + P f +PV’ + B*/4+‘1 

- V . {(v . B)23/4~} + Vq + V * (CJ,) 

=w+ $‘.{[S-B(VAB)]AB}, (11) 

where E is the total thermal energy density (E, + ci); W = ( Wi + W,) is the total 
external heating rate; S is in the alternative form [3] 

S = c/e{kT,V(ln[n,]) + p” * V(kT,)}, 

9 = S; + 9i3 

(24 

(12) 

q: including the complete thermo-electric flux; and vj = -j/ene is the current velocity. 
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It is immediately obvious that this equation has a conservative form. However, we 
note the presence of the fluxes [3] due to the source, 

q,=-&SAB, 

and magnetic diffusion, or Ohmic heating, 

Q,=-$ [q - (V A B)] A B. 

(13) 

(14) 

There is one further conservation law obtained from Eq. (l), namely, that for 
magnetic flux. Thus integrating Eq. (11) over an arbitrary surface with periphery 1 we 
obtain 

~+)‘B.v~dl+!.(ll.~~B).dl=I.S.dlZ, (15) 
I I -I 

where the flux 

@=j’B-ds. (16) 

Since the integrals in Eq. (15) are all over the bounding line, this clearly yields a 
conservation law for @. 

In treating the finite difference form of the Eqs. (1) to (10) it will be important in 
many cases to ensure that two conservation laws be simultaneously obeyed. In 
general this well be energy + one other, since all the terms interact in energy. It is 
therefore convenient to arrange the terms in the equations in complementary pairs 
which, taken together, mutually maintain energy conservation. Such pairs are: 

Eq. (1) Source Eq. (4) Source 
Eq. (1) Diffusion Eq. (4) Ohmic heating 
Eq. (1) Advection Eq. (9) Magnetic tension and pressure 
Eq. (4) Work 
Eq. (8) I 

Eq. (9) Particle pressure 

Eq. (4) Ion-electron exchange Eq. (8) Ion-electron exchange 

The algorithms are most naturally developed in these pairs to maintain the conser- 
vation laws, and this procedure is adopted here. 

Furthermore, some of these terms are standard in that well-known methods are 
available for their treatment, namely, work/particle pressure in standard 
hydrodynamical codes [7-lo] and ion-electron energy exchange [21]. Although not 
all such methods exhibit exact conservation we shall assume that some such 
treatment is used, and therefore we do not consider them further. 
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3. CONSERVATIVE FINITE DIFFERENCE APPROXIMATIONS 

In view of the conservative form of the preceding equations, it is natural to require 
that their finite difference representation also obey a conservation relation. Thus 
consider a closed system (no boundary fluxes) in which the quantities X; generated 
by the numerical procedure at a mesh point, Z, at the conclusion of the nth term step 
are to be conserved, i.e., x,X; is constant in time. Thus in general for a closed 
system, 

TX; =y = . . . +“‘. (17) 

We shall call schemes which obey this condition to the accuracy of the round-off 
error strongly conservative. 

In many cases the physical quantity, X, is inherently non-negative (e.g., density, 
energy), in which case the scheme is frequently non-negativity maintaining: 

if q > 0, then X; +’ > 0 for all elements, 1. (18) 

Such a scheme, which is also strongly conservative, obeys the following useful 
stability theorem: 

A non-negativity maintaining, strongly conservative scheme is stable if the input 
data are non-negative. 

The proof follows directly from the definition of stability since any element X; is 
bounded from above by C,x. The condition on the initial data may be omitted if 
the scheme is linear and differential (i.e., if $ =X0, a constant value, then X; =X0), 
for the system then reduces to an extremal operation of the type considered in 
Ref. [22]. 

The strict equality in Eq. (17) may be relaxed to allow an error dependent on the 
time step Dt of the form 

7 x; = T @-‘) + O(Dt’), (19) 

which we shall call weakly conservative. In contrast to strongly conservative schemes 
which maintain conservation exactly, weakly conservative schemes may do so to a 
prescribed accuracy. Thus consider a calculation over a total time 7 = N Dt for which 

T(X;-x;-‘) <KDt’, 

where K is a positive VIA filLitcr rromba, then the overall conservation error 

c(fl-x) <NKD?=KzDt 
I 

(20) 

(21) 
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and may be limited to any value by an appropriate choice of time-step, Dt. In general 
therefore one introduces an accuracy condition 

(22) 

to limit the conservation error during the calculation, where a is an appropriate frac- 
tional error limit. 

Such a scheme obeys the important stability theorem: 

A non-negativity maintaining, weakly conservative scheme subject to an accuracy 
condition is stable if the initial data are non-negative. 

Suppose there exist a real, positive, finite, constant K such that Eq. (20) is always 
obeyed; then since the overall error is given by (21), any value Xy is bounded from 
above by C, x + Kr Dt. The existence of such a constant, K, is ensured by the 
accuracy condition (22), for if K exists for step (n - 1) --t n, then 2 z is bounded. 
Hence C X; ’ ’ is bounded and K exists for step n + (n + 1). Since C q clearly 
exists, K exists for step O+ 1, and therefore for all succeeding steps. 

A yet weaker form of conservation is 

(23) 

which we call consistently conservative. Such schemes cannot improve their conser- 
vation accuracy by means of a time-step adjustment. 

The above considerations apply to closed systems; however, the extension of these 
concepts to open systems is straightforward (provided the boundary fluxes are finite) 
and in no way alters the general results derived. 

In this paper we shall only consider strongly and weakly conservative systems, the 
latter always being assumed subject to an accuracy constraint. In some of the 
algorithms, the scheme is strongly conservative in one quantity and weakly in a 
second. 

4 

(i) The Mesh and Related Quantities 
We shall consider only cylindrically symmetric systems. For simplicity we assume 

the mesh has a uniform spacing AZ and 6R in the Z and R directions, respectively. 
Defining the unit vectors i and j in the Z and R directions, respectively, we define the 
cell corners to be at the points (i AZ i + j 6R j), where i and j are integers. The cell 
with corners ((i, j), (i + 1, j), (i, j •t- l), (i + 1, j t I)} will be called the (i, j) cell. The 
mesh contains (IT + 1) and (JT t 1) cells in the Z and R directions, respectively. 
The axis of symmetry is defined at j = 0. 
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In most Eulerian schemes, the variables are given values at the cell centres {(i + f), 
(j + f)} only. This procedure is adopted throughout in this work, although for some 
applications the magnetic field (for example) might be more conveniently specified in 
the centres of the cell faces {i, j + f } and {(i + $), j}. Thus the fundamental variables 
of the problem are: 

di+ 1/2.j+ 112 density 
ui+ lfZ.j+ l/2 2 component of flow velocity 
vi+ l/2 j+ l/2 
E. ’ 

R component of flow velocity 
r+l/Z,jtVZ electron specific energy(/unit mass) 

Hi+ V2.j+ l/Z heavy particle specific energy 
Bi+1/2,j+1/* azimuthal magnetic field 

Values at points intermediate between cell centres will always be assumed to be 
obtained by interpolation. Thus, 

(24) 

gives the values at the face centres. Values of products at face centres must be taken 
to be the product of individual terms each centred at the face centre, not the mean of 
the product terms themselves [ 171 if the scheme is to be conservative, for example, 

[xyli,j+l12=xi,jt1/2yi,j+Y2 

=$(Xi+l/2,j+l/2 +Xi-l/2,j+~2)(YitV2,j+l/2 + Yi-l12,j+1/2)” (25) 

In a similar fashion corner values are given by 

These conventions will be used throughout to denote values obtained for all quantities 
at points intermediate between cell centres. 

The flow variables will be calculated at times n Dt, where n is integral and Dt the 
time step, by calculating the time difference Dx”’ 1’2 between the values of X at time 
(n+ l)Dt,X”+‘, and at time n Dt, X’: 

DX”+v2 =x”+’ -x” (27) 

The superscript thus indicates the time index, FL In the following we shall omit 
subscripts or superscripts from terms, where their values are obvious or unimportant. 
Values at intermediate times (n + )) Dt will be defined by interpolation: 

X”+w2=)(X” +Xnf’). (28) 
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In addition to D, the time differencing operator, we also define two space 
differencing operators, A and 6, in the Z and R directions, respectively, 

and 
AX,,, =X,+,,z,J -Xl-,,/z,J 

(29) 

w,, =x,,J+v2 -XI.J-v29 

where Z, J are arbitrary (integer or half-integer) indices. 
In these terms the conservation laws become: 

ID@ i+ vz,j+ iI = sum of boundary terms only, 
i.j 

1 O’i+ lfZ,j+ l/2 = sum of boundary terms only, 
i.j 

where the total flux is given by 

@‘i+ v2.j+ 112 =Az 6R Bi+ ,/2,j+ y2 (30) 

and the total energy by 

G+ 1/2.j+ l/2 = vj+ I/2 jdi+li2,jtV2 [E,+*,2,j+~,2+~i+V2,j+~,2+~~:+*,2,j+lii 

(31) 

where Vj+ ,,2 is the volume of the cell (i, j). 

(ii) Finite Dlflerence Forms 

In general all the derivatives in Eqs. (1) to (lo), with which we shall be concerned, 
are of one of three types, to each of which we can assign a definite finite difference 
form to be used throughout this work. 

( 1) Time derivatives. 

ax L-1 
n+1/2 ~ [DX]n+1/2 

at Dt ’ 

(2) Second order space derivatives. 

(32) 

(33) 
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(3) Cross product derivatives. 

(34) 

+ [A a aXI/+ 1/2,jl/dz 6R, (35) 

with similar expressions with z and r interchanged. 
In the above expressions X is a general flow variable, and a a general transport 

coefficient. Some derivatives contain an explicit factor r which is to be taken in the 
general terms a and X in the expressions above. We shall make strict use of these 
difference operators, except on the symmetry axis, j = 0, where they may be over- 
ruled by the rigorous analytic forms (Appendix 1). 

Writing out the expressions explicitly by making strict use of the definitions (24) to 
(29), we see that the derivatives are defined in terms of face-centred quantities 
xi,j+ l/23 xi+ l/2,jy etc., as is necessary for a fully conservative system. 

The above definition allows the following derivative equalities to be maintained in 
finite difference form, 

3 [A(X 6 a) - WA alli+ lp,j+ vz/Az 6R 

8X 8a 8X aa ---- 
=aZ ar ar 8z 

j 1 fAXGali+ l,j+ 112 + [AX~ali,j+v2 Az 6R 
2 -[dXAaIi+ mj+ 1 - [~XAaIi+,,z,j I/ 

j [Bali+~,j+~,2Xi+3,2,j+v2- [6ali.j+~,2Xi-~,*,j-V2 

[ -[AaIi+w,j+I Xi+l,z,j+3/2 + [AaIi+I,z,jXi+l/2,j-li2 Ii AZ JR, (36~) 

which follow from 

a2a 
- = & * GAa/Az 6R = Ada/AZ 6R. 
ar az (37) 

The above derivative forms occur in all the transport terms. It can be seen that the 
three are entirely equivalent and the last (36~) is the most compact. For. most 
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purposes it is immaterial which form is used; however, if in the subsequent form 
alternating direction integration (ADI) is used to integrate the equations it is 
preferable to use specific forms of (36a), (36b) or (36~) to ensure conservation in 
each mesh sweep. 

In the following sections we shall first give the differential equations, which will 
then be cast in finite difference form using these relations. 

5. THE SOURCE TERMS 

(i) Finite Dlrerence Approximations 

In cylindrical geometry the source terms in Eqs. (1) and (4) can be written in a 
number of equivalent forms [3]. For our purposes the most convenient have been 
found to be 

(38) 

(39) 

Some points may be noted about these equations. The term E/d(&i/i?t) which might 
be expected from &,/2t is included in the energy convection equation. The 
logarithmic term in (39) is included to maintain positivity of E in the finite difference 
form of the equation. The asymmetric form of Eqs. (38) and (39) is such that the 
finite difference approximations to these forms alone maintain energy conservation on 
each sweep through the mesh. 

Using the differencing rules described in Section 4 we obtain 

X & [G{Edp,}i+,,2,j+,,2--dlE6P,}i+,,,,j+1/*1 I 

+ Id(PA dE)/dz21i+ 1/2,j+ l/2 + l&P.. 6E)/6R21i+ l/Z.j+ l/2 1 (40) 
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and 

E n+l 
- Elt 112, j+ 112 w 

I 

ac Dt 
it 1/2,j+ L/2 - 

4nedi+ 1/2,j+ l/2 

-d[P~dB/dz21i+~~2,j+1/2- [6[~~S(Br)l/r6R21i+l,2,j+I/2 * C41) 
II 

Equations (40) and (41) will be shown to be only weakly conservative, but are 
non-negativity preserving in E, due to the exponential term. A strongly conservative 
form, but one that is not non-negativity preserving, is obtained by replacing Eq. (41) 
by the form 

Ei’J&,jt 1/2 = Elt 1/2,jt I/.? + 
acDtEit112,jt112 

4 nedi t 112 ,jt l/z 
& ([dPLG(Br)/rli+ I/Z,j+ I/2 

- &T [s(p-G(Br)Jlrli+,/2,j+ I/2]. (414 

We have preferred to maintain energy positivity without a fix and have therefore 
generally used Eq. (41). Equation (41a) must be treated implicitly in both of the non- 
linear E, B terms on the right-hand side to maintain stability and its conservative 
properties. The coupled solution of the pair of Eqs. (40) and (41a) therefore follows 
the same procedure as that to be described for (40) and (41). 

Thus far we have not specified the time values for the terms, B, E, /3, and /I,. For 
second order accuracy in time these should be taken at time (n + 4) DT by terms 
such as 

B n+1/2=;(Bntl +B”), (42) 

i.e., a centred difference form. This, however, requires an implicit treatment of 
Eqs. (40) and (41). We shall show that the equations above are in fact linearly 
unstable unless an implicit form is used for B and E with the interpolation parameter, 
0, given by 

B=@“+’ + (1 -6)B” (43) 

in the range i < 6’ < 1, so that the use of a centred difference or fully implicit scheme 
in B and E is necessary. For flI and /?, explicit forms are used subject to the 
constraint described later. 
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(ii) Conservative Properties 

It is immediate apparent from Eq. (40) that 

and this contains only contributions from the boundaries i = 0, IT + 1, j = 0, JT t 1, 
in conformity with Eq. (15). It is readily shown that these boundary terms in (44) 
represent finite difference forms of the integrals in (15). 

In order to examine the energy conservation properties of this algorithm we note 
that 

DE”’ I” = 2E”’ ‘I2 tanh(De/2) N E”’ ‘12De{ 1 + O(De’)}, (45) 

where De is the argument of the exponential in Eq. (41) and E”+ I” = ~(E” t En+‘). 
Neglecting the term in O(De”) we obtain Eq. (41a). Using the centred difference 
(8 = f) forms of Eqs. (40) and (41a) we obtain, after some algebra, 
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_ E? t 112 
I+ I/~,JT+vz~(~~)~+II~,JT+~ (46) 

where the cell volume Vjt ,,2 = S, rjt ,,2. In deriving these terms we have made use of 
the fact that since B vanishes on the axis, p,,.+ I,2,o = 0. 

We observe from this result that these are only contributions from the bounding 
surfaces, and that in consequence the algorithm is conservative. Furthermore, if 
reflective boundary conditions are used to define EIT+,,2,j+ ,,2, etc. (see Eq. (123)) 
the finite differences give a good approximation to the source flux Q, in Eq. (13). 
There is one serious defect, namely, the existence of a flux across the cylindrical axis. 
So far, however, we have not defined the terms Ei+,,2 ,-,, 2 and (Br)i+,,2 ,-,, 2. We may 
therefore choose their values to give a zero flux across the axis, namely, 

Ei+,,2,-V2=Ei+1/2,,,2 : (Br)i+,,,,-,,,=-(Br)i+,:,,,,,. (47) 

At first sight this choice for (Br), + ,,2, _ ,,2 may appear inconsistent with the symmetry 
relation for B (Appendix 1). However, within the finite difference scheme it is used to 
calculate (Br)it 1,2,o = d [(Br)i+ ,,2,1,2 t (Br)i+ ,,2,- ,,2] = 0, and is therefore correct for 
the application for which it is used. For other applications-such as to directly 
calculate the derivative-a different interpretation of (Br)i+ v2,- 1,2 may be necessary; 
indeed with this value the algorithm does not exactly reproduce the known analytic 
solution [3]. The actual choice made will depend on the weight assigned to the 
integral as opposed to differential properties of the model. In our opinion it is best tn 
maintain the conservation laws since the value of the parameter is always to be 
regarded as some form of average over the cell. Equation (47) does not represent the 
only possible choice for Ei+,,2 ,-,/ 2 and (Br)i+,,2,-u2, but is the best one consistent 
with a reasonable definition of the axial current from equation (5) and has therefore 
been adopted for use in the code MAGT. 

In the case of energy conservation time ordering is important. Centred difference 
schemes give overall energy conservation accurate to the order of O(Dt3) at worst. 
Fully implicit (or explicit) schemes will be conservative only to terms O(Dt’). 

(iii) Stability 

It was shown in Ref. [3] that the coupled source equations admit wave-like 
solutions. Furthermore it is well-known [23] that the wave equation gives stability 
problems in finite difference form, particularly if the amplitude and its derivative are 
both evaluated at the cell centre, when simple explicit algorithms are absolutely 
unstable. This unstable behaviour was observed in practice with an early code using 
an explicit solution to the magnetic field problem; study of these stability problems 
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led to the identification of thermal magnetic waves (31, and to the algorithms 
presented here. 

The stability of the finite difference forms, Eqs. (40) and (41) is, however, uncon- 
ditionally established through the conservation relation (46) and the non-negativity 
maintaining nature of Eq. (41). It is clear that since even the explicit form is weakly 
conservative in energy the forms are stable independent of the implicitness parameter, 
8. This does not, however, imply that all forms are well-behaved. Thus let us consider 
the linearised stability analysis for the case p, = 0, @Jaz = 0 and @Jar = const., 
where the algorithm has the simple form 

x E’,+:,~ 8 + E;, I ,., (1 -8)-E:+:,,&E;-,J1 -e)} 

E Pttl=E” -’ acDt So, ~- IJ 1.J 2 4nd,,Je AZ Jr K,; 1 e + E:,,( 1 - 0) I 

X Pi’,+ :,, 6’ + B:, I ,., (1 -e)-B:t:,,B-B;-,,A1 -e)}. (48) 

Considering an error of the usual form in both B and E, namely, beilk” and CeilkAz, 
respectively, we obtain a growth constant 

n+l 

Y=b= 

p+1 

b” 2’ (49) 

given by 

(Y - 1 NY - E:,; ‘P:,,) 

=$. (~~)2($)2($+(l-0))2sin2(kdl). (50) 

This is simplified if E:,: l/E;,, N 1 to 

Y= 
i *i(i-e)r, 

1 T iOr ’ 

where 

ro=Jz(F) .$.%sin(kAz). 

(51) 

This linearised form of the algorithm is only stable if 1 y] < 1, i.e., if e > 4. 
Examination of Eq. (48) shows that the origin of this instability can be traced to a 
failure of Eq. (48) to maintain E,,, non-negative. Furthermore we note that in this 
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simple form the algorithm is non-dispersive if 8= $. This is behaviour is 
demonstrated in Fig. 1, where a thermal magnetic wave solution is shown calculated 
with the non-negativity maintaining algorithm (41) for values of 8 = 0, 4 and 1 in the 
special case where pL = /?,( z ), and is discussed more fully in section S(iv). Phase and 
amplitude error are introduced by the fully implicit solution (19= I), but the centred 
difference scheme faithfully reproduces the analytic form. An explicit calculation 
(0 = 0) shows increasing growth as predicted by (5 1). 

Thus explicit forms of (40) and (41), whilst not strictly unstable in the sense that 
growth is unbounded, are unsatisfactory in that they exhibit a large, but bounded, 
growth of these error terms, the amplitude of the errors being limited to the 
magnitude of the quantities themselves. A similar calculation can be performed for 
the z derivatives, with similar results. Thus we conclude that the terms p, are only 
treated satisfactorily if f3 > f. In an AD1 calculation the growth is due to an explicit 
step of Dt/2 and an implicit step of Dt/2, the net growth constant 

1 + ir, 
” = 1 - ir, (52) 

and ]y’]‘= 1. 
We must now examine the behaviour of the terms containing /3,. It follows from 

the stability theorem outlined earlier that these terms are also strictly stable. 
However, as before this does not imply that the algorithm is satisfactory. We 
consider first the linearised form of Eqs. (40) and (41) with /3, = 0, /3-. = const and 
variations of B and E in z only. For this case, also, we obtain the growth constant y 
given by Eq. (51) but with r, replaced by 

(53) 

and conclude that the terms B and E must also be treated with 8 2 f. 
There is a further complication with regard to the term /3,, whose numerator is 

linearly proportional to B [ 181. Thus Eq. (40) contains terms of the form 

(54) 

i.e., an advection term with speed -(ac/e)fiL(aE/az), where p: =@JB. 
This term is differenced explicitly in time, and by centred difference (in B) in 

space, which by a classic result is linearly unstable [23] and therefore unsatisfactory. 
To resolve this difficulty is straightforward by pursuing the hydrodynamic analogy. 
Thus we may retain the spatial centred difference and treat the term in B in Eq. (54) 

581/43/l-9 
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implicitly within the Newton-Raphson iteration. Alternatively we may use upstream 
differencing for aB/az in either an implicit or explicit form: 

P - ItI, 1,2,J ! 
if (EaEiazh+ Il2.J > o 

4 + U2.J - otherwise. (55) 

Of these alternatives implicit centred differencing suffers from the possibility that a 
solution to the implicit equation in B may not exist. The upstream differencing 
approach, however, avoids this difftculty, and is therefore used in the code MAGT. 
Experience has indicated that the explicit form is simpler to code, and runs satisfac- 
torily. A time-step constraint of the usual form in advection (Eq. (90)) is necessary to 
avoid a spurious change in sign of B due to term (54). We note that the conservation 
properties are not changed by the form of /?, adopted, since the finite difference 
schemes (40) and (41) are conservative on each sweep through the mesh. 

(iv) Numerical Tests 

In view of the complicated structure of he governing equations, no analytic 
solutions of the complete set of equations are known. Some useful similarity solutions 
to the source equations (38) and (39) in one dimension exist [3] and these will be 
used to examine the behaviour of the finite difference approximations (40) and (41) 
to these equations. These solutions exist only for the case where /?, = 0. 

The first such solution reveals the existence of thermal magnetic waves. Thus 
consider a plasma of ambient electron energy, E,, and zero field, with /?l a function 
of I only. Then there exists a perturbation solution 

B = B, exp(i(ot - kz)} : E = E, exp{i(wt - kz)} (56) 

corresponding to a wave propagating in the z direction with frequency 

J 
EO (jJ= -. 
4nd 

adpI k 
dr ’ * (57) 

We have already, in Section 5(iii), investigated the response of the linear&d 
algorithm to this wave, and found that the wave is only well described by a centred 
difference approximation, amplitude and phase errors being introduced by other 
forms of time differencing. 

A more sensitive test of the spatial and temporal differewing is provided by the 
case pL =pl(z) only, where the waves are cylindrical. It is shmm in Ref. 131 @hat in 
this case the waves are described by Bessel functions, with a standing wave 
distribution 

E = E,J,,(kr) cos wt : B = B,J,(kr) sin ot (58) 
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with 

B, =- (59) 

Figure 1 shows the response of the full algorithm to this problem. An energy 
perturbation of amplitude lop4 units is applied to a plasma of mean energy 1 unit, 
with no initial magnetic field. The plasma length of 12 mesh cells is taken to be one 
full wavelength of the perturbation. The magnetic field B is zero at the end of the 
mesh, and the electron energy, E, is oscillated at the frequency, w, corresponding to 
the wavelength through Eq. (57) at the boundary. A standing wave is therefore 
established on the mesh, described approximately by the Bessel function distribution 
(58). Figure 1 shows the temporal behaviour of the magnetic field and electron energy 
in cell 6 near the first maximum of the electron energy and a zero of the magnetic 

4 

x10-’ 

3 

2 

E,B 

1 

-3 

-4 

a 

” V ___-- E 
-B 

FIG. 1. Comparison of numerical and analytic solutions of the radial thermal magnetic wave 
problem described in the text, Section S(iv). The variation of magnetic field (B) (solid line) and specific 
electron energy (E) (dashed line) as functions of the number of integration steps (N) are shown in 
(a) for explicit (0 = 0), centred difference (0 = i) and implicit (19 = 1) forms of the positivity maintaining 
finite difference term. The exact perturbation solution (chain line) is also shown, clearly distinguished by 
its constant amplitude. The unstable behaviour of the explicit form is shown in (b), where the peaks of 
the magnetic field (0) and electron energy (x) are plotted logarithmically against the integration step (N). 
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FIG. l-Continued. 

field. The time step used was l/20 of the period (o Dt z 0.31416). As can be seen 
from Fig. 1 the centred difference scheme gives a reasonably accurate representation 
of this wave: a detailed study of the numerical results shows that after 100 time-steps 
the maximum amplitude error from the exact solution is less than 1%. 

The inaccuracy of the coarse spatial differencing (12 cells/wavelength), and the 
inexact differencing of the Bessel function are reflected in the errors introduced into 
the values of the magnetic field,B. The electron energy being calculated at its 
maximum is relatively accurately spatially determined, and its errors therefore essen- 
tially represent temporal differencing inaccuracy. Nonetheless the error in B is always 
relatively small, less than 10% of the amplitude, and no spatial phase errors occur 
with centred differencing. 

In contrast both explicit and implicit differencing are unsatisfactory. As can be 
seen from Fig. lb, the explicit calculation shows an unstable exponential growth with 
number of steps as predicted by the linear analysis; the growth, however, is even- 
tually limited by the non-negativity condition and weak conservative form but only at 
values comparable with the ambient conditions. The implicit calculation shows large 
phase and amplitude error. In particular we note the behaviour after about 12 time- 
steps where the field at cell 6 shows a rapid decrease. This is associated with a wave 
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which propagates from the origin and reflects the inability of this solution to match 
the boundary conditions at the origin. (Note that since these waves are dispersion free 
the wave takes 4 period to propagate 4 wavelength.) 

A second problem for which analytic solutions exist is provided by the one dimen- 
sional case where p, is a function of r only and 

B = --\/471(iEozf(x) : E = E,z’g(x) 

where 

The analytic solutions are 

f(x) = 2 tan(x) : g(x) = set’ x. 

(60) 

(61) 

(62) 

Inserting these forms in the spatial differences of Eqs. (40) and (41) we find that the 
numerical scheme reproduces solutions (60) but with f and g given by 

f “+1=f”-2(Bg”+‘+(1-e)gn)Dx: 

g n+’ = gnexp(-(~f”+’ + (1 L O>f “) Dx), (63) 

demonstrating the second order spatial differencing accuracy. It is clear from Eq. (62) 
that these solutions represent a phase of rapid growth of the magnetic field and 
electron energy. The accuracy of the numerically generated solutionsf” and g” may 
be directly assessed against the known exact forms, and provides a sensitive test of 
the temporal integration procedure. 

We may examine the existence of solutions of Eq. (63). Eliminating fnt ’ we obtain 

g n+*= g”exp{-[y-28(1 -O)~DX]DX}~X~{~~J~~~+‘DX~). 

Consider the behaviour of the function 

(64) 

y=x-aeBX (65) 

for which y -+ -co as x + &co and which has a single maximum of value 
1//3{ln(l/a& - I } at x = I//3 ln(l/a/?). Real solutions of Eq. (64) therefore only exist 
if 

2ezgn exp{ 1 - [f” - 2e(i - e) g” Dx] Dx} Dx2 < 1 (66) 

and the smallest such solution gives the most accurate approximation. For a fully 
implicit calculation (0 = 1) this restricts the initial step-length Dx < @- 0.43 and 
for a centred difference (/3 = i), Dx 5 %. For an explicit calculation (0 = 0) there is no 
restriction of the step-length. The origin of this difficulty is readily seen from Eq. (63) 
to be due to the non-linear term g in the equation for g” + ’ and occurs if any implcit 



132 G. J. PERT 

form for E is taken on the right hand side of Eq. (41). In practice this implies no 
additional restriction of the algorithm (40)/(4 1) provided the integration step-length 
is controlled to obey physical constraints satisfactorily. 

The physical origin of this absence of a solution is clearly seen in the exact 
solution (62) for which a solution only exists if x < n/2. In a similar fashion the finite 
difference form only exhibits solutions for restricted times, Dx. 

Figure 2a shows a comparison of the implicit, explicit and centred difference 
schemes for a calculation with Dx = 0.1. The failure of the implicit form after 10 

f:g 

10.0. 
100.0 

1.0, 
10.0 

0.1, 
1.0 

a 
No of time steps 

FIG. 2. Comparison of the numerical and analytic solutions of the similarity grwoth problem 
described in the text, Section 5(iv). The variation of the variablesfand g as functions of the number of 
time steps are shown in (a) for explicit (0 = 0), centred difference (0 = 4) and implicit (0 = 1) forms. The 
variation of error with integration step-length is shown in (b) for both magnetic field (0, 0) and 
electron energy (+, X) at time 1.0 using explicit and centred difference forms. The straight lines show the 
expected first order and second order error variations of the respective forms. 
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time-steps can be seen. The marked improvement in accuracy obtained by using the 
centred difference is most noticeable. In Fig. 2b we examine the variation in error 
with step-length. It can be seen that for the explicit term, the error varies as Dx, being 
first order, whereas the centred difference error shows second order Dx2 dependence. 
A reasonable level of error for the second order term is obtained with Dx 5 0.25. 

(v) Alternating Direction Integration 
The preceding analysis of the conservation and stability properties of the finite 

difference forms, Eqs. (40) and (41), indicate that a centred difference form should be 
used. 

The two dimensional form of the equations is a further complication. However, 
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fortunately in one dimension the equations may be cast into a generalised tri-diagonal 
form, which may be solved by a generalisation of the standard recursion routine 
123, p. 2771. The equations are thus well suited to the application of the standard 
AD1 [ 24, 251 scheme particularly in view of the fact that in most practical 
applications the problem is dominated by a density gradient in one dimension (Z), 
i.e., is one dimensionally dominant. However, it is worth noting that the asymmetric 
ICCG method [ 181 can also be used for this problem. 

Equations (40) and (41) are non-linear both by virtue of the dependence of the 
transport coefficients ,ZI, and p, on B and E, and the explicit exponential term. In 
principle we could treat the complete non-linearity within the following iterative 
procedure. In practice since the field free coefficient in /.I, is independent of E, and 
field dependent contributions from /I, and /3: depend on B2 and higher terms, we have 
found it satisfactory to calculate /31 and p: at the start of the time-step (n Z%) only, 
and use these values explicitly. The non-linearities due to the argument of the 
exponential only are solved iteratively. The nature of these non-linearities, in 
particular the exponential form, make the problem extremely suitable for solution by 
a Newton-Raphson technique, which will rapidly converge, provided such a solution 
exists. 

The algorithm thus proceeds as follows: 

Sweep 1. Calculate approximate values of Z?“+“’ and ~!?+l’~ from Eqs. (40) and 
(41) using R” and E” on the right hand side, with time interval fDtn+1’2. 
Newton-Raphson iterate in one direction (say, Z) to obtain the AD1 values at the 
intermediate time p+V2 and i?“j;n+y2. 

Sweep 2. Calculate approximate values of B” + ’ and Z?‘+ ’ from (40) and (41) 
using Z?“+‘12 and z?+*‘. Newton-Raphson iterate in the other direction (R) to obtain 
B nf’ and E”“. 

Since the operations in the directions R and Z do not commute, as a consequence 
of the spatially varying coefficients and the exponential term, the routine is clearly 
not symmetric in R and Z. Approximate symmetry, however, may be introduced by 
alternating the order of the direction of the sweeps 1 and 2 as the routine proceeds. 

(vi) The Newton-Raphson Iteration 

The Newton-Raphson iteration is performed as follows. Consider the z- 
differencing term over an interval DT, which may be written in the form 

B,,, = BI",, f A&,$,+ 1,~ - BXI,JELJ + CXI,JEI- l.J, 

E1.J =Ef., expWkJBIt 1,~ - BY,.,B,,, + CY,,JB,-I,J}, 
(67) 

where Z = i + $, J = j + i, and B,“., and Ef,, are the values of B,,J and E,,, on entry to 
the implicit stage. The arrays AX.. . CY are given by 

AX,,J = - ; DT ;&I,+ ,,,,,/Az 6R - 
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acDT 1 
B& = - - 

e I 
y (@ U+ Y~,J - @3,- ,,,,JYAz CM 

- (Pa,+ 1/2,J + PA,- I,~,J)/AZ~ 
I 

3 

cx,,J = ac 
e I t SP,-,,,JAz AR f PA,- ~/I,J/Az’ 

I 
3 

A Y,,J = - E /f@,,v2,~/AZdR +P.,+~,2,J/AZz~~ 

(68) 

+ (!?,I+ l/t,J + PA,- V2.J )/AZ2 13 

cy,, = 

These equations are to be solved by iteration. Thus if B,,J and l?,,, are given by the 
previous iteration, the next set of values are given by 

BIJ = B,,J + dB,.J, 
E,,J = g,:,J + dE,,J, 

(69) 

where 6B,, J and SE,, J are solutions of 

W, - AX,,J 6% 1,J + Bx,,J a&,, - cx,- 1.J ~E,,J = DX,.,, 

6EI,J -A r,, 6B,+ 1,J +B~,J6B,,J--y,,J6B,-,~J=DY,.J. 

(70) 

(71) 

If g,,, and J!?,,~ are the values of B,,, and EI,J obtained from (67) with I?,., and B,,., 
on the right hand side, 

ox,,, = &,J - &J; Oy,.J = 6, - ‘,:.J (72) 

and 

Ay,,~=E,,~AY,,~v BY;,J=EI,JBYI,J, CY;+,=EI,,CY,,,. (73) 

A simple recursive algorithm for solving general tridiagonal equations of the type 
(70), (71) is given in Ref. [23, p. 2771. 

It is easily shown that the calculation in the R direction is cast into a similar form. 
Most AD1 forms are only weakly conservative due to the non-linearity in E and B 
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in Eqs. (41) and (41a). Resulting from the fact that the increase in magnetic energy 
between two time levels 0 and 1, 

(B” - Bo2)/87r = B1/* DBV2/4n, (74) 

a strongly conservative scheme must be centre differenced in B on the right hand side 
of (41a) and the unsuperscripted terms Ei+ 1,2,j+ ,,* be taken at the same time in both 
(40) and (4 la). Since Eqs. (40) and (41a) in this form conserve energy exactly on 
each sweep through the mesh, the ADI form with sweeps of the following form is 
strongly conservative. 

Sweep 1, explicit in R and implicit in Z, consists of the operations: 

B 
-It+ v2 = B” + T l $ {S[E” A&]/AZ 6R f S[/3_ 6E”]/6R2}, 

j9+1/*=En+- ; $$ En(A/3, G(B”r)/r AZ 6R - S[/3, @“r)]/r 6R*}, 

(751 
B” + l/2 = B” + 112 _ _ ; F {A[E n+ ** &&]/AZ 6R - A[/3_ AE*+“*]/Az’}, 

1 acDt 
E” + l/2 = E” t  112 _ _ -E 

2 4ned 
n+V2{G,llIAB”+“2/Az 6R + A[~~Ai?“+“2]/Az2}, 

p = + (B” + B”+ l/*). (76) 

Sweep 2, explicit in Z and implicit in R, is constructed in a similar fashion. 
Provided the terms are calculated in the order shown, the evaluation of the terms 
p”‘* for use in ,??“+ ** is accomplished without recourse to elimination. This 
solution is unconditionally linearly stable. 

In principle, since the algorithm is absolutely stable, one would expect that it may 
be used with any step-length. Such a procedure does not, however, ensure the 
existence of a solution of the Newton-Raphson iteration, as in Eq. (63). Let us 
examine the condition that the solution to Eq. 
form of Eq. (67) as 

E, = Ei exp 
I 
2 Y,,By $ 
I 

(67) exists. We may write the general 

(77) 

where k, 1, m are 
(CX, BX, AX) and 
exists if 

general indices (I,J) and X and Y are the tridiagonal matrices 
(CY, BY, AY), respectively. Clearly a solution to Eq. (77) only 
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where E’, is the set of values E, with E, replaced by EL. Since the minimum of l/x@ 
occurs at x = 1, the value of EL generating the minimum is 

E’k = 1 
I 
2 Y,,X,, (79) 
I 

and the solution exists if EL < 0 or 

c Y& + c Yd,,,,E:, < W;/Ei). (fw 
I I 

Since the matrix elements X and Y are proportional to the time-step DT, this 
condition is clearly established by a suitable choice of the time-step. For if the 
argument of the exponent is made small, Eq. (80) yields 

x Y,,B: + x Y,,X,,,,E:, < 1 1 Y,,X,,E; - 1, 
I I,m I I 

(81) 

a condition established if 

1 Y,X,E;=(AY,CX,+, + BY,BX, + CY,AX,-,) E; < 1. (82) 

Since this condition essentially limits the change in electron energy allowed in any 
time-step, it will be subsequently seen to be necessary on physical grounds. Due to 
the fact that the overall condition (80) is established in the course of the iterative 
calculation it is possible that a failure to converge may ocur, although in the author’s 
experience with this routine when the step-length has been determined by Eq. (89) this 
has never happened. A simple remedy to alleviate this problem, should it arise, whilst 
incurring a minimum of error is to allow E, to take the limit value EL in the iteration. 
In particular, if E,,J in Eqs. (72) and (73) is replaced by E;,, and AY,,J, CY,,J set to 
zero and BY,,J set to unity the iteration will converge on to the limit value. A simple 
test for this condition is readily obtained for we routinely calculate the argument of 
the exponential, 

De’ = c Y,,B,, (83) 

and inequality (80) therefore may be written 

De’ + ( 1 - E,/E;} 5 ln(E;/Ef). (84) 

Similar problems are also introduced if the alternative form (41a) is used, which 
again reduce to a condition of the form (81) namely, 

c WC + + c 
2 

YJ,,E, 
)I 

> 2 2 L&E;, W) 
I l,m I 

m+i 
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which yields a condition of the same form as that of (82). The test equivalent to (84) 
is 

((1 - E,/E;)- De’]‘2 2Ei/E’,. (844 

(vii) Time-Step Constraints 

Although the algorithm is absolutely stable, and can in principle be used with any 
arbitrary time-step, we have seen that solutions of the implicit form only exist under 
restricted conditions. In practice this result is the mathematical expression of the 
physical behaviour we observed in our test solutions in Fig. 2. Thus in the example of 
Fig. 2 the exact solution only exists for times 

(85) 

where I is a characteristic length. 
Similarly the thermal magnetic wave solutions of Fig. 1 also show behaviour with 

a characteristic time. 

For a satisfactory treatment of either of these effects the time-step Dt Q r. Indeed 
Fig. 2b indicates that a value of order Dt w 0.1 t should be used to ensure accuracy of 
about 1%. 

In a similar fashion Eq. (53) indicates that the presence of wave solutions 
associated with the cross product terms /I,. Including these the characteristic time 

(87) 

Since we wish, in practice, to resolve effects over a few mesh spacings the charac- 
teristic length must be taken to be the smallest of dz and 6R: 

1= Min(Az, 6R). (88) 

With this choice of 1 we have found a satisfactory time-step to be 

Dt < 0.25t, (89) 

a value which is also compatible with condition (82). 
The truncation error terms in Eqs. (40) and (41), which govern the energy conser- 

vation error in the weak algorithm, also depend essentially on the ratio Dt/z. Thus if 
a conservation error limit is included, this also provides a separate restriction on Dt. 
We shall discuss this limit below, in the section dealing with the complete code. 
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The “advection” term (54) introduces a time-step constraint associated with its 
physical nature. The term /I, has the limit /3-. -+ 0 as B -+ 0, so that the term (54) 
cannot of itself change the sign of B. This behaviour is avoided if the upstream 
differencing of B in Eq. (55) is made subject to the time-step constraint 

6 

(i) Magnetic Diflusion-Ohmic Heating 
In cylindrical geometry the magnetic diffusion term yields 

and the Ohmic heating rate per unit volume, 

(91) 

(92) 

We note there is no contribution of q, to the Ohmic heating. 
The treatment of the derivatives in Eq. (91) is straightforward using the general 

rules (33)-(36) yielding the finite difference form 

%‘iF&.j+1/2 =BY+I/~,~+I/~ +Dt{A[r,ABIi+,,2,j+y~Az2 

•t s[~J’6(Br)li+y2,j+1/2/8R2 

+ {a[VeAB]i+u2,j+y2 -A[r_/r6(Br)Ii+y2,jtl/2}/AZ~R} (93) 

except adjacent to the axis in the cells j = 0, where the term 6[~JrG(Br)j is 
undefined. To avoid this defect we put 

g [?$(Br)]i+ J/2,1/2 
1 

=%P- [ 1 + &Br) 
(94) 
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where the superscript D is to indicate its use with the diffusion. The limit 

is, of course, finite and finite difference forms based on analytic forms near the axis 
are given in Appendix 1. In fact the conservation properties determine which form is 
appropriate to use (see Eq. (100)). 

In a similar fashion we use finite difference equation (66) to give the Ohmic 
heating in time Dt per unit volume: 

E ((‘lii+l.j+l/2[dBl:+l,j+l/2 + ~li.j+V2[dBlf,j+1/2)/4z2 wi+ I/Z.j+ 112 = gn 

+ ~~~i+~2,j+~lG~Br~/rlf+~2,j+l + ~li+1/2,j~8(BT)/rli2+1/2,j)/jSR2~~ 

(95) 

As with Eq. (9 1) we note that the terms in the cell j = 4 will again “blow up.” To 
avoid this we put 

where the H indicates that it is associated with the heating term. The value given to 
this derivative will also be determined by energy conservation considerations 
(Eq. (101 )I. 

The complete finite difference form of the magnetic diffusion is a typical diffusion 
equation, although the cross product q, terms introduce asymmetry. As with all such 
equations it is only unconditionally stable in a centred difference or fully implicit 
form (see Section 6(ii)). As we shall show, only the centred difference form is fully 
conservative. We may, however, prefer to relax this condition and treat diffusion as a 
stiff process, with an arbitrary time-step, in which case the fully implicit form is to be 
preferred as it does not introduce spurious reversals of sign: the difficulties introduced 
by this stiff form from the cross product terms will be considered in Appendix 2. The 
implicit equation can be solved by one of the standard methods, AD1 or preferably 
asymmetric ICCG [ 181, the latter being used in MAGT. 

(ii) Conservative Properties 

Consider first the conservation of flux: 

~DBi+1/2,j+~2=Df~ [ {[tl~~Blrr+l,j+1/2- [Vld’I,,j+,21/‘z2 

[(Br)IT+3/2.j+ l/2 + PIIT+ l/22+ l/21 
IT+ I,j+ l/Z 
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[CBr)- V2,j+1/2 + CBr)l/*,j+ I/* A2 6R 
O,j+l/Z II/ 1 

[tBr>i+ VZ.JT+ 3/2 + tBr)i+ VZ,JT+ l/2 

The conservation of energy yields 

;I Wit 1/2,jt 1/2 + Bl:Z,jt l/2 DBit 1/2-j+ ~~/4nl Vjt v2 

= $ [T [ Vj+ V2([tIlBABIIT+ I,j+ y2- [V,B ABIo,jt 1/2)/AZ2 

(Br)ITt l/2,jtl/2(Br)lTt l.jt l/2 
IT+ I,jt l/2 

- 6 ($), jt v2 tBr)v2,jt v2(Br)v2.j+ l/*)/AZ JR] 

(Br)i+ l/Z,JTt v2(Br)it y2,JTtdAZ CM * (98) 
it lI2,JTtI 

Clearly there is no flux on axis so that these terms must satisfy 

[t~(Br)]::1,2,0=ZBii112,Vi [+;(B~I]~,,~,/‘R* (99) 

A suitable form given in Appendix 1 is 

giving 
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If these forms are used the energy generated by Ohmic heating is consistent with the 
depletion of magnetic energy. The apparent inconsistency in Eqs. (100) and (101) is 
not significant, and is due to the implicit assumption that the same value of B can be 
used to give a good approximation to both B and B2 within a cell. The inclusion of 
the differences (100) and (101) in Eqs. (93) and (95) are mutually consistent, viewed 
in terms of cell averaged quantities. 

Since the term B!‘+ w ,+ vl,j+ ,,2 on the left-hand side of Eq. (98) is defined at time 
(n + 4) Dt, Eq. (98) is only exact if all the terms on the right-hand side involving this 
term are taken at this time. This may be achieved by writing the squares in the 
Ohmic heating expression (95) in the form of products of differences taken at two 
different time levels, e.g., 

[AB]‘a [AB]n+V2[AB]“, (102) 

where v is the time level of B on the right-hand side of Eq. (93). Only in this centred 
difference form do Eqs. (93) and (95) yield exact energy conservation, i.e., are 
strongly energy conservative. Alternative forms, which may be preferable for other 
reasons, are only weakly conservative. In this connection it is perhaps of interest to 
note the similarity of this scheme to that of Christiansen and Roberts [26], working 
on a non-uniform one dimensional mesh. The generalisation of the above forms to a 
non-uniform mesh is readily accomplished by the following modified terms in 
Eqs. (93) and (95), the remaining terms being unchanged. We consider the case of 
non-uniform space in Z, the case of a variable mesh in R being treated in an identical 
fashion. The modified terms in (93) are 

BlT&,j+1/2 =Bi’t l/z,j+1/2 + DtA[VlABlAzIi+ ~~,j+dAZi+ 112’ (103) 

However, we note that in forming the difference form (95) the Ohmic heating is 
calculated in terms of quantities evaluated for pseudo-cells whose centres lie at the 
cell face centres. Since we clearly add the contributions from each pseudo-cell to give 
a total for the real cell corresponding to the volume overlap, we obtain, for the 
modified form of (95) 

Dt AZi+, -- ___. Wit w2,jt l/2 - gn 
I 
AZ,+ w2 Vlit 1 [AB/Azlf+ 1.j-t l/2 

AZ. 
+ 2 qli[AB/AZ]i,i;1/2 + **a’ 

Azi+ 112 ! 

It is readily shown that this form is exactly conservative if centred diffeencing is used. 
The generalisation to consider non-uniformity in R is accomplished in an identical 
fashion. 

We may now identify the scheme with that of Ref. (261. In that work the algorithm 
is defined in terms of the electric field and the current density, which in our scheme 
are defined at the cell faces, and the Ohmic heating calculated within a cell of AZ!+, 
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spacing about that point, i.e., within the psuedo-cell used to derive Eq. (104). The 
method of Ref. [26] applied to present problem reduces to a calculation on a pair of 
de-coupled meshes (i) and (i + i) with B defined on one mesh and (E, j) on the other. 
In the present method of calculating Ohmic heating is thus equivalent to a calculation 
on one of the meshes only, and in this form is identical to that of Ref. [26]. The 
centred difference criterion for exact energy conservation is equivalent to that of 
Ref. [26], namely, that the electric field term, AB”““, must be time centred and the 
current taken at the same time as in diffusion, v[AB]“. In this connection we may 
note the considerable reduction in storage and work obtained by avoiding the need to 
evaluate the pair of two component vectors at each mesh point. 

7 

(i) Thermal Energy Difluusion 

In these terms we consider the individually energy conservative terms involving 
electron thermal conduction, current convection and the residual thermo-electric flux. 
The governing differential equation can be reduced to 

I 

2P,.Ei(Br)]+$[2jlaEg]/. (105) 

We have included the current convection with the cross product heat conduction 
(Righi-Leduc) term by introducing the coefficients 

xl = aKJk : x(- = a(KJk + cB/4xe), (106) 

where K~ and K, are the coefficients of electron thermal conduction. 
This equation is readily put into finite difference form using (33) to (36) to give an 

equation of the usual form for diffusion, but asymmetric due to the cross product 
terms, namely, 

EY:&,j+ I/Z = El+ v2,j+ I/Z + Dt A [XL AEli+ 1/2,j+ ~,~/Az~ 

I I 6R2 
i-t V2,j+ V2 

1 1 
+ T ‘j+ l/2 

- 1 [AE ‘(Vi.)Ii+ I,j+ l/2 + [AE ~(d)li,j+ 112 

581/43/l-10 
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2ac 
+ 

4nedit I/2.j+ l/2 I LS[P-E J(Br)Ii+ I/z,j+ 1/2/6R2 
rjt 112 

+ A[P-EABIi+ L/z,j+1/2 IA 11 z2 * (107) 

Although these terms do not significantly change the general method, they can 
cause the introduction of spurious changes of sign unless care is taken to prevent this 
(Appendix 2). As is well known, the simple diffusion equation must be solved 
implicitly [ 231 if it is to be unconditionally stable. The subsequent analysis will show 
that this condition remains unchanged by the cross product terms. Thus (107) should 
be integrated by some implicit method, ADI, or better, asymmetric ICCG [ 181, the 
latter being used in MAGT. 

The finite difference form of (107) is obviously conservative, by virtue of the forms 
of the differences used. 

The cross product terms can be differenced in a slightly different manner, whilst 
remaining conservative, 

-f&t-&&fj$$- [$s(~:)AE-A~:~E] 
i+ 1/2,j+ l/ 

/AZ~R (108) 

instead of form (36). This term, however, introduces problems with the axial cell 
(i, 0}, particularly when the equations are used in a stiff form. Although these 
problems can be satisfactorily overcome, they are best avoided by the use of face- 
centred differencing-form (36), where (Q’)~+ 1,2,0 = 0 is explicitly used. 

(ii) Stability 
The stability behaviour of the linearised form of IQ. (107) without the cross 

product terms is well-known [21]. In this section we simply extend this result in the 
usual way be considering the growth of an error in E of the form C”ei’kAr. In one 
dimension the finite difference equation with constant coefficients has the form 

where 

E;+’ = EI” + a,(&+ I - 2~,+~,-,)+a,(~,+,-~,-,), (109) 

E,=BE;+’ t (1 -8)E;. (110) 

Hence the growth rate of the error, y = Z”+‘/F is given by 

1 -r(l -0) 
ltr8 ’ (111) 

where r= 2{a, [ 1 - cos(k AZ)] t ia, sin@ AZ)}. 
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The stability condition ] y(’ ( 1 is satisfied if 

2e-l>- 
a, [ 1 - cos(k dz)] 

a:[ 1 - cos(k4~)]~ + ai sin*[kdz ] ’ 

which yields a condition on 0, 

145 

(112) 

i.e., if f?>f, as for the normal case. 
This conclusion is readily extended to include two dimensional diffusion processes. 

We also note that these results apply to magnetic diffusion described by (93). 

8 

(i) Magnetic Stress/Advection 

In this case the complementary terms are the Lorentz force terms in Euler’s 
equation, 

and the advection term, 

CYB -=-&B)-$vB). 
at 

(114) 

(115) 

(116) 

The latter equation is identical to the usual continuity equation in two dimensional 
Cartesian (as opposed to cylindrical) co-ordinates. As is well known this term is 
troublesome [23], but several well-behaved methods [7-lo] are available and it is 
assumed that one of these is used here, presumably the same scheme as that used for 
the hydrodynamics. The magnetic pressure may then be treated in a similar fashion 
to the particle pressure. It then remains only to find a conservative prescription for 
the Maxwell tension term. The actual form we use will depend on the form of radial 
pressure differencing used. Thus if we use face-centred differencing [8] 

; P2) 1 ,. rj+*[G(B)21i+U2,j+l + rj[B(B)21i+U2,j aR c117j 
i+ VZ.i+ V2 2 1 rj+ V2 
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we use a face-centred form of B* 

B2 - ,’ [(B>i+,2,j+112 + [(B)i+~p,jI* 
r i+ V2,jt V2 2 rj+V2 

Or in direct difference form [7], 

;(B2) ) 
i+ V2.h V2 

5 + I(B v2,j+3/2 - (B*)i+ 1/2,j+ ~2lldR 

(118) 

and 

B2 1 =S- [Bi+ l/*,j+u*Bi+ v2,jt 1 + Bi+ */*,jBi+ I/z.jt l/21 - 
r 2 

. (120) 
it Il2,jt 112 ‘it l/2 

It is easily shown that the contribution of these two terms is identical from both 
prescriptions. 

(ii) Conservative Properties 

It is clear that in any well-chosen hydrodynamic scheme both axial momentum and 
flux will be conserved. The radial momentum is conserved trivially in cylindrical 
geometry. It therefore remains only to consider energy conservation. 

In a typical second order hydrodynamic scheme the advection typically has the 
form 

We may remark that no algorithm can use this term and be stable; however, most 
schemes obey this equation to terms O(Dt’) at least. Hence, 

~ [V{d[u DU + v Dv] + B”“‘* DB/4n}]i+l,2,j+v2 

Dt 

=dzj X vj+U2 { [U-,/2,j+l,2Bll2,jt v2 + ul/*,jt 1/2B- L/*,jt ~21 B,,j+ 112 

- [u ITt3~2,jtv2B~Tt~/2.j+1/2 + UfTtVZBIT+3/2,jtI/ZIBITtl.j+VZ}Ip’ 

- $ c sl{vit V2,n+ u2(rB)i+ V2,JT+ 312 
I 

+ Vi+ vz,n+ yz(rB)it V2.m+ ~21 Bi+ V2,n+ 1/8x* (122) 

This result obtained using either (117) or (119) is clearly conservative. It also has 
the desirable property that there is no axial flux on axis if Bit 1,2,0 = 0, as it should be 
on physical grounds. 
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9. BOUNDARY CONDITIONS 

Thus far we have described algorithms which generate numerical approximations 
to the differential equations in the bulk. In an attempt to model a physical problem 
we must clearly specify boundary conditions to our numerical problem which are 
compatible with those of the physical case. The mathematical structure of the 
underlying physical equations (hyperbolic or parabolic) demands that the boundary 
conditions be those of an initial value problem, namely, that the physical parameters 
(d, u, U, E, H, B) be specified throughout the mesh at the initial instant of time, and 
that Dirichlet or Neumann boundary conditions be applied at the spatial boundaries 
at all times. 

The first of these conditions, namely, the initial state, will depend on the problem 
considered by the user. In typical laser plasma interaction modelling it will consist of 
a uniform slab target, adjacent to a “vacuum” interface. The only difficulty 
introduced by this case is that within an Eulerian scheme, as described here, all cells 
must have a non-zero density and it is therefore necessary to introduce a progressive 
density decrease in the “vacuum” zone. 

At the spatial boundaries we may specify either the value or the normal derivative. 
In practice for the types of problems treated by these codes these boundaries take one 
of two forms: 

(a) Reflective. It is assumed that at a reflective boundary the physical quantity is 
uniform across the boundary, for example, 

X IT+3/2,j- -xIT+ Y2.j’ (123) 
The normal derivative across a reflective boundary is zero and any diffusive flux 
across it therefore zero. It is therefore also called a closed boundary. 

(b) Open. The value of the physical quantity is set at some specified value. 

X ,Tt yl,j = specified value. (124) 

In general the algorithms described here are designed to be used with either form of 
boundary condition. In the code MAGT the boundary conditions are entirely 

reflective, with one exception. The application of these values is straightforward 
except for the case of the magnetic field, where the radial condition 

(Br)i,JT+3/2 = cBr)i,JT+ l/2’ 

is used to satisfy Ampere’s law. 

(125) 

The use of reflective boundary conditions conforms to the known conditions of the 
physical problems in all cases but one-magnetic diffusion. In this case the magnetic 
field will diffuse across the boundary into the undisturbed slab material, or the field 
lines penetrate into the vacuum region propagating as a low frequency electro- 
magnetic wave. The exact boundary conditions at the edge of the mesh are therefore 
unknown. The practical alternatives at our disposal, namely, a reflective boundary or 
an open one with boundary value set to zero, represent opposite extreme approx- 
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imations-the first allowing no flux to cross the boundary, the second coercing the 
maximum transfer. In an effort to find an intermediate condition, we have considered 
the following approximation. The normal computational mesh is enclosed by a single 
layer of boundary cells. The outer boundary of these boundary cells is made reflective 
(closed). At the start of each magnetic diffusion calculation the field in the boundary 
cells is set to zero, and flux allowed to diffuse into these cells across the mesh 
boundary, to the limit allowed by the implicit calculation. The diffused flux in the 
cells is then assumed to rapidly decay, and be lost to the mesh. In most cases the 
effects of magnetic diffusion across the boundary are negligibly small. 

The use of reflective boundary conditions in E and B in the source algorithms 
implies a non-zero energy flux across the boundary (46), which is the numerical form 
of the flux (13) and is associated with the Poynting vector of the electro-magnetic 
field due to the electric field induced along the boundary by the pressure gradient and 
the azimuthal magnetic field. The existence of an energy source/sink is thus implied 
in the region adjacent to the boundary, whose temperature and density match that 
within the mesh. 

10. THE COMPLETE CODE 

As discussed earlier it is advantageous to use the split-time step philosophy and 
separate the various calculations into their complementary parts. In this way a 
strongly conservative scheme can be generated if the appropriate centred difference 
implicit schemes are used, together with an exactly energy conserving hydrodynamic 
term. In practice the latter may present problems due to the need to treat the 
advection of the complete energy term from which must be subtracted electron, 
magnetic and kinetic energies to determine the ion thermal energy. The overall 
conservation error may, however, be limited by a time-step constraint as in Section 3, 
if the system is weakly conservative. Thus if the total energy in the mesh is 8” and 
the conservation error for step n is DK” we may restrict the time-step for step (n + 1) 

Df’+l= aEP”fDB” . Dt”. (126) 

The order in which the operations are performed in a split-time step scheme is only 
unimportant if the operations involved all commute. One can readily show that 
except for the case of constant coefficients, none of the operations described in 
Sections 5-7 do commute, and one must take account of the ordering of steps in the 
code. A reasonable sequence, bearing in mind the physical effect of each operation, is 

- Source - Magnetic diffusion /Ohmic heating 
New 
time 
step 

+ Magnetic advection/accelerotian - Therm2 

and is used in the code MAGT. 
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The code MAGT has been constructed using the algorithms described earlier. The 
hydrodynamics are solved by donor cell differencing with anti-diffusion flux 
correction (FCT) [8, lo]. This method is effectively of second order accuracy, and is 
used in weakly conservative form for the pressure work/kinetic energy terms. The 
model considers two temperatures, electron and ion, whose equilibration is solved by 
a positivity maintaining routine [27], similar to that described in Ref. [21]. The 
programme is designed to study the interaction of laser radiation with a solid target 
considered as an ideal gas and models the absorption of the laser beam via inverse 
bremsstrahlung and a reflective dump at the critical density to provide an electron 
heat source. The transport coet’licients used are given by Braginskii [ 191, with 
standard flux limitation [28] plus options for ion-acoustic flux limitation and Bohm 
diffusion. The code is in two versions using either the non-negativity preserving, but 
weakly conservative, source algorithm, Eq. (41) or the strongly conservative form 
(41a) with a fix-up. A continuous energy balance, allowing for the fluxes out of the 
mesh, is evaluated, and the conservation error used to limit the time-step Dt, through 
Eq. (26). The accuracy factor, a, used for time-step limitation is the same as that used 
to determine the accuracy of the solutions in the ICCG and Newton-Raphson 
solutions. There is thus a conservation error resulting from the iteration error, which 
is of the same order of magnitude as that which results from the truncation error of 
the finite difference schemes. Experience indicates that for reasonable values of the 
accuracy parameter, the step-length is usually controlled by other limits in the 
programme, namely, the Courant-Fredrichs-Lewy condition, the source conditions 
(89) or (90), diffusion accuracy limits or a limit on the energy deposition in a cell 
within one time-step. 

We have found that using these algorithms it is not necessary to include either 
artificial smoothing [ 141 in addition to that introduced by the FCT algorithm or any 
reset to zero (except as noted in the conservative form). The solutions generated by 
these finite difference forms maintain essential positivity, and are well behaved, with 
no rapid variations in space or time, provided the various limiting conditions 
indicated in the paper are observed. 

11. TEST RUNS 

We present some results obtained with the code MAGT to illustrate various 
features of the computational scheme. Since we are concerned with the numerical 
behaviour of the code rather than the physical nature of this interaction process we 
shall consider the calculation for a fixed set of input data. The mesh used had cell 
dimensicms &aR) = (2.5, lO),um and contained 30 x 10 cells, the latter being 
smalk than is gcnax& used for mudelling studies. The target was solid carbon, 
assumed to ti an average charge of 5, with an initial temperature of lo4 K. The 
solid initially occupied 7 cells in the 2 direction, the density then decreasing by a 
factor of 4 from cell to cell outwards up to cell 16, and remaining constant thereafter 
at a value equal to low4 of the critical density: the initial density was uniform in R. 
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FIG. 3. The spatial distribution of magnetic field calculated with the positivity maintaining version 
of MAGT (P) under conditions described in the text, Section 11. Both contour map (a) and three dimen- 
sional plot (b) are shown. Units are megagauss. 
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b 

FIG. 3-Continued. 

The laser beam consisted of a pulsed Gaussian in space and time with a radial l/e 
width of lO,um, temporal l/e width equal to the time-to-peak of 100 psec and an 
intensity on axis of 1016 W/cm’. The laser wavelength was 1.06 pm corresponding to 
a Nd: glass system. The accuracy factor, a, was set to 10p3, the flux limiting factor, 
f, as defined in Ref. [28] to 0.63 and the reflectivity at the critical surface to 0. 

For convenience we will present results at a single time only, 100 psec after the 
start of irradiation, i.e., at the peak of the laser pulse. We shall show only the 
behaviour of the most sensitive parameter, namely, the magnetic field. To fully 
illustrate the spatial variation we shall show both a contour map and a projection of 
the complete surface. In each case the surface is mapped on both sides of the cylin- 
drical axis and allows the surface to be seen from both back and front in the 
projection, the axis of symmetry on the projections being shown by the arrow. The 
initial positions of the solid boundary and the critical density surface are indicated. 

In Figs. 3 and 4 we compare the non-negativity preserving, P (Eq. (41)) and 
strongly conservative, C (Eq. (41a)) versions of the code for the case when the 
thermo-electric coefficients, &, , are set to zero. As can be seen the two codes give 
very similar smooth and well-behaved results. The peak field for the form P is 
-1.02 MG contrasting with the value -1.22 MG for C, both occurring at the same 
point in space. The greatest difference occurs at the boundaries, where the fields are 
relatively small, but differ by up to a factor of 2; for example, in cell (1, 1) code P 
gives a value -8.41 kG compared to -15.4 kG for C. In contrast variations in the 
electron temperature, flow velocity and other parameters do not anywhere exceed 
5 %. Code C is slightly slower than code P. Thus P required 506 time-steps compared 
to 546 with C to reach 100 psec. The comparative CPU times using a CDC 7600 for 
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FIG. 4. Contour map of the magnetic fiild W&F CUN&~DX%S i&d& to 8lk0st d fig. 3 ~llcuaarcd 
with the conservative version of MAGT (C). 
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FIG. 5. Contour map of the magnetic field under conditions equivalent to those of Fig. 3, but 
calculated with a closed boundary for magnetic diffusion. 
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FIG. 6. Contour map of the magnetic field under conditions equivalent to those of Fig. 3, but 
calculated with an open boundary for magnetic diffusion. 
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FIG. 7. The spatial distribution of magnetic field calculated with the full set of thermo-electric coef- 
ficients included under the same conditions as those of Fig. 3. Both the contour map (a) and three 
dimensional plot (b) are shown. 
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FIG. l-Continued. 

1000 time-steps were 562 (P) and 596 (C). Surprisingly the energy conservation error 
after approximately 500 time-steps was less for the positivity conserving form (15%) 
than for the strongly conservative one (17%), reflecting the conservation error 
associated with the iteration error in the matrix solving routines. For these reasons 
the non-negativity preserving form (P) is generally preferred, and was used in the 
subsequent tests reported here. 

In Figs. 5 and 6 we compare the effect of differing boundary conditions on the 
diffusion of the magnetic field. Figure 5 shows the case of closed (reflective) 
boundary conditions, and Fig. 6 that of open with the boundary value in (124) set to 
zero, both calculations being performed with code P under conditions identical to 
those for Fig. 3, with which they should be compared. For comparison the closed 
form took 507 time-steps and had an energy conservation error of 15% after 
100 psec, whereas the open calculation took 475 steps and had a similar error of 
15 % at the same time. Comparing Figs. 3, 5 and 6 it can be seen that over the major 
region of field generation, the boundaries have only a small influence, the peak fields 
being respectively -1.02, -1.03 and -1.30 MG, and occurring at the same point in 
space. At the boundaries the largest difference occurs in the solid at the edge of the 
mesh (1, 9), where the values are - 15.0, - 101 .O, - 1.19 kG, respectively. In contrast 
at the downstream corner (30,9) the values show less variation, namely, -20.1, 
-32.5 and -20.5 kG, respectively. In general the precise form of the diffusion 
boundary is not significant, except for the region noted, where strong diffusion at the 
cold boundary is expected. The form described in Section 9 is intermediate between 
the two limiting cases and, in the author’s opinion, gives the most satisfactory com- 
promise. 

The inclusion of the complete form of the tensor p considerably increases the 
running time of the code, primarily through a decrease in the time-step required to 
satisfy (90). The code, P, took 1601 time-steps, with an overall energy conservation 
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FIG. 8. Three dimensional plot of the magnetic field calculated under conditions similar to those of 
Fig. 7, but using an explicit form of the cross product term p,. 

error of 24% to reach 100 psec. The comparative CPU time for the first 1000 steps 
was only 354 set, reflecting the more rapid ICCG iteration with a shorter time-step. 
The magnetic fields generated at 100 psec are shown in Fig. 7. Comparison with 
Fig. 3 shows that although the general pattern of the field is not greately changed by 
the additional terms, the peak fields being -1.08 and - 1.02 MG, respectively, 
significant differences in detail do occur, with the peak field occurring in cell (10, 1) 
in the full calculation compared with (13,2) in the simpler case; the overall effect 
being to shift the fields into the solid. For comparison we show in Fig. 8 the result of 
a calculation for which /I, is treated by explicit centred difference, rather than (55). 
The marked irregularity thus introduced can be clearly seen, although the overall 
pattern remains very similar. 

In Fig. 9 we illustrate the modification to the solution introduced by Bohm 
diffusion instead of classical under the same conditions as those of Fig. 3. The 
marked increased in magnetic diffusion is clearly noticeable, but is accomplished 
without any adverse effects to the behaviour of the finite difference scheme. 

The overall conservation errors recorded in these runs (-20%) are larger than 
those one would normally accept in a modelling calculation. The dominant source of 
error in this calculation is due to the errors accumulated in the iteration procedures, 
and is approximately proportional to a @, where N is the number of time-steps. 
Since a could probably have been reduced to about 10V4 without significantly 
changing the step-length, DC, an improvement of the overal conservation error to an 
acceptable 2% could readily have been accomplished, although with a corresponding 
increase in CPU time. 
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FIG. 9. Three dimensional plot of the magnetic field under conditions equivalent to those of Fig. 3, 
but with Bohm, instead of classical, magnetic diffusion. 

12. CONCLUSIONS 

The numerical modelling of self-generated magnetic fields, their diffusion and 
coupling with the overall hydrodynamic behaviour of a plasma has been considered. 
Algorithms suitable for the calculation of each aspect of the problem are described, 
and their properties analysed. It is shown that considerable care must be taken if the 
solution generated is to be well-behaved, stable and reasonably smooth. The incor- 
poration of these algorithms into a complete working code has been described, and 
some typical solutions presented to indicate the general good behaviour of this code. 
In this form no additional smoothing has been found to be necessary during extensive 
experience with this code. 

APPENDIX 1: VALUES OF PARAMETERS ON AXIS 

On the axis of symmetry it follows from Ampere’s law that the magnetic field must 
be zero: 

B=O:r=O. (Al.)) 

Hence we may show from the known behaviour of the transport coefficients, and the 
governing equations that 

v and B are odd in r, 
d, u, E and H are even in r. 
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Thus if X is a general even variable, 

$ = 0: r = 0. 
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(A1.2) 

Expanding B in an odd power series in r we obtain 

or 

;-&(Br) 1 = 4B,,,/6R 
r=O 

= (27G - B3,dPR 

first term only, (A 1.3a) 

first two terms, (A1.3b) 

where B,,2 is the value of B at the centre of the cellj = 0. As described in the text the 
first term (a) is generally used. 

Expanding X in even powers: 

x LO ~~l,Z (A1.4a) 

or 

x LO = (9X*,* -X3,2)/8* (A 1.4b) 

Of these the second is more accurate, but requires a check to ensure positivity. The 
simpler form (A1.4a) has been used throughout for the flow variables. However, a 
modified form, 

X LO = MaxI (9X,,, - X&/g, 0.8X,,, 1, (A1.4~) 

has been used to calculate the values of the even transport parameters on the axis. 
In a similar fashion we note that the transport coefficients, a,, are even and a, are 

odd. Thus Eqs. (A1.4) may also be used for aI. For the cross product terms we note 

(A1.5) 

In using these terms in the finite difference expressions, Eqs. (A 1. I), (A1.2) and 
(A1.5) are exact and must be rigorously maintained. On the other hand, expressions 
(A1.3) to (A1.4) are approximate and may be used as required. 

It is also implicit in (A1.5) that if Eq. (37) is obeyed, 

and 

(a-r>- 1/2 = (aArh = (aArlo (A1.6) 

581/43/l-11 
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must be used to evaluate d(a_/r), or d(a_r), in Eqs. (93) and (107). 

APPENDIX 2: THE GENERAL DIFFUSION EQUATION AS A STIFF EQUATION 

The general diffusion equation in the presence of a magnetic field has the form 

where 

x.VW=X,,V,,W+XIV,W+X,~,VW. (A2.2) 

Since the field B has a constant direction, the following behaviour occurs at an 
extremum of w where Vv = 0. 

V * Ol,h-VW) = Vy/ - curl0l_h) = 0 (A2.3) 

(A2.4) 

At a maximum Vf, w and V: v are both negative 

:.z<o at a maximum 
(A2.5) 

>o at a minimum 

Thus in general extrema decay in free diffusion [22,29]. As a corollary no new 
extrema are spontaneously created. 

Furthermore the extremum cannot maintain itself against decay by movement since 
if it moves with velocity v 

DIc/ -==%“+v.grady,=g. 
Dt at (A2.6) 

The finite difference representation of diffusion by means of a matrix equation in 
terms of the diffusion matrix, M, should therefore have the property that it creates no 
new maxima or minima in the field. A necessary condition is therefore one of 
positivity, namely, that the diffusion matrix be monotone. A form of matrix 
possessing this property is the M matrix form, where 

Mi,i > O> Mt. j < O, i # j. (A2.7) 

In order to maintain the extremal property we make use of the result that if 

A,B,C,D,E&O and C=A+B+D+E+F 



GENERATION OF MAGNETIC FIELDS IN PLASMAS 161 

then the solution X, of the equation 

-AX, - BX, + CX - DX, - EX, = FX,, (A2.8) 

satisfies 

MWh,,X,,X2,X3,&) <XC Max(&,X,,X,,X,,&). (A2.9) 

Thus the extremal condition is satisfied if the diffusion matrix is an M matrix, whose 
elements obey 

M 1,J;I.J - - -“~,,;~,~-~ - M~,~;~+~ - M~,J;~--l,J -MI.J:I+ l.J + F~.~;~.~~ 642.10) 

where the finite difference form of the diffusion equation is 

2 M,,J;,‘,J’x:;J” = F,.~:,.~x;.~* 
I’,J’ 

Inspection of Eqs. (93) and (107) shows that (A2.10) is satisfied by the forms 
proposed. However, for large values of the cross product rates, the M matrix form is 
not retained. 

Consider the equation 

(A2.12) 

in the region (x,, x2) and suppose that y has fixed values y, and yz at x, and x2, 
respectively. If y is a single valued function of x in the range x, to x2, then at some 
intermediate point x, as t + co, 

Y-+ I YZ, Y > 0, 
YI 3 y < 0, 

x, <x<x,. 

Consider now the one dimensional cross product diffusion term 

having the form of (A2.12), which we write in finite difference form as 

(A2.13) 

(A2.14) 

If x, is independent of x, then 

WY+’ = 
WY+ T(Vi+ I -  Vi- I>? (A2.16) 
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where 
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r= Dt. ax, 
26yAx ’ 

In a stiff form, where ]Tj $ 1, ~7’ ’ tends to some value, which may be positive or 
negative depending on the sign of r and the magnitudes of vi+ I and vi-, . This is 
clearly unsatisfactory. However, Eq. (A2.13) suggests that in this case 

l-P 1, Vi + Vi+ I) 
(A2.17) 

r< -1, Vi + Vi- 1. 

This behaviour is ensured by replacing the centred space difference in (A2.16) by 
an appropriate forward or backward difference, 

r>O: W~+'=~/;+2r(y/i+,--v/i)= 
lyy l t2ry/;,f: 

i+2r ' 

r<o: g+'= w; + 2qy/, - vi-,) = u/y y!zi: , (A2*18) 

in a fully implicit form. Furthermore it can be seen that if used as in Eq. (A2.18) the 
diffusion matrix including the forward or backward difference has an M matrix form, 
and also satisfies Eq. (A2.10). We may further remark that this form is clearly 
closely compatible with the differencing form (35) for the derivatives. This simple 
device thus guarantees physical behaviour’ for the solution of the diffusion equation. 
It is not, however, conservative and will thus lead to conservation errors which will 
modify the time step, if such a check is included. 

The cross product diffusion terms can be shown to represent a reversible evolution 
of the system [22] in contrast to the direct terms, which are irreversible. The cross 
product terms alone thus give rise to a purely oscillatory behaviour. This behaviour is 
only maintained if the differencing of these terms is anti-symmetric [22] and a 
centred time-difference is used. The cross product terms in (107) are correctly 
symmmetrised, although not in (log), and if used alone with a centred time difference 
will yield a purely oscillatory solution, but with phase errors, whose size depends on 
the time-step used. The use of a fully implicit time-step, or upstream spatial 
differencing, damps these oscillatory modes. In practice one is only interested in 
oscillations whose period is comparable with the characteristic times in the problem, 
and one is content to average over more rapid variations. This desirable behaviour is 
achieved by the damping of rapid oscillations by the non-centred forms. The damping 

’ We note that in the case of magnetic field diffusion, if there is a change in sign between cells, e.g., 
I-+ 1, Bi+ ,/B, < 0, then since q -+ 0 as B -+ 0, Ei --t 0 (not Bi+ ,); i.e., the Hall effect does not induce a 
change in direction of the field. ^ 
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of long period oscillations may be avoided by the use of the correctly symmetrised 
form (107) with a weighted time-difference to yield centred-time differencing for 
slowly varying events [22]. 
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